Rapid Detection of Biomolecules in a Junction Less Tunnel Field-Effect Transistor (JL-TFET) Biosensor

نویسندگان

چکیده

In this paper, we present a double gate JL-TFET based biosensor by varying the dielectric constant to detect various biomolecules through label-free detection technique. An investigation regarding properties and behavior device has been investigated with help of Silvaco TCAD. It is observed that Junction less TFET advantageous over JLFET TFETdue absence junctions. The proposed shows reduced short channel effects, lower subthreshold swing along higher voltage gain. biomolecule done inside cavity different electrical parameters such as electric field, sensing current, threshold transconductance are observed. change in voltage, drain used metric sensitivity presented for detection. Biomolecule position have find out their effect on parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Proposed Device with Conventional Gate All around Tunnel Field Effect Transistor Gaa-tfet

In this paper, we propose and validate a Heterogate DielectricDual Material Gate-Gate All Around, Tunnel Field Effect Transistor (HD-DMG-GAA-TFET). A comparative study for different values of high-k has been done, and it has been clearly shown that the problem of lower ION (which hinders the circuit performance of TFET) can be overcome by using the dielectric engineered hetero-gate architecture...

متن کامل

Junction Field Effect Transistor (JFET)

The single channel junction field-effect transistor (JFET) is probably the simplest transistor available. As shown in the schematics below (Figure 6.13 in your text) for the n-channel JFET (left) and the p-channel JFET (right), these devices are simply an area of doped silicon with two diffusions of the opposite doping. Please be aware that the schematics presented are for illustrative purposes...

متن کامل

Computational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)

By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...

متن کامل

Tunnel Field Effect Transistor (TFET) with Strained Silicon Thinfilm Body for Enhanced Drain Current and Pragmatic Threshold Voltage

Quantum tunneling devices are very promising as they have very low leakage current and show good scalability. However, the most serious drawback for tunneling devices hampering their wide-scale CMOS application is their low on-current and high threshold voltage. In this paper, we propose a novel lateral Strained Double-Gate Tunnel Field Effect Transistor (SDGTFET), which not only tackles these ...

متن کامل

Double-gate nanowire field effect transistor for a biosensor.

A silicon nanowire field effect transistor (FET) straddled by the double-gate was demonstrated for biosensor application. The separated double-gates, G1 (primary) and G2 (secondary), allow independent voltage control to modulate channel potential. Therefore, the detection sensitivity was enhanced by the use of G2. By applying weakly positive bias to G2, the sensing window was significantly broa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Silicon

سال: 2021

ISSN: ['1876-9918', '1876-990X']

DOI: https://doi.org/10.1007/s12633-021-00981-0